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In traditional graph-based optimization framework for salient object detection, an image is over-segmented into
superpixels and mapped to one single graph. The saliency value of each superpixel is then computed based on
the similarity between connected nodes and the saliency related queries. When applying the traditional graph-
based optimization framework to the salient object detection problem in natural scene images, we observe at
least two limitations: only one graph is employed to describe the information contained in an image and no
cognitive property about visual saliency is explicitly modeled in the optimization framework. In this work, we
propose a novel graph-based optimization framework for salient object detection. Firstly, we employ multiple
graphs in our optimization framework. A natural scene image is usually complex, employing multiple graphs
from different image properties can better describe the complex information contained in the image. Secondly,
we model one popular cognitive property about visual saliency (visual rarity) in our graph-based optimization
framework, making this framework more suitable for saliency detection problem. Specifically, we add a
regularization term to constrain the saliency value of each superpixel according to visual rarity in our
optimization framework. Our experimental results on four benchmark databases with comparisons to fifteen
representative methods demonstrate that our graph-based optimization framework is effective and computa-

tionally efficient.

1. Introduction

Since Itti et al. [1] introduced the first computational model of
visual saliency, a large number of methods have been proposed for
salient object detection in images [2—18]. For detailed reviews, see
[19,20]. Salient object detection can be utilized as a preprocessing
operation in many applications of computer vision, including image
quality assessment [21,22], image segmentation [23], image and video
compression [24,25], picture collage [26,27], video summarization
[28,29], object detection and recognition [30-32], visual tracking
[33,34], and content based image retrieval [35]. Therefore, the
performance of salient object detection algorithms is very important
for subsequent applications.

Recently, a few researchers have proposed salient object detection
methods using a graph-based optimization framework. Since the graph
is able to conveniently describe the structure information within an
image, these saliency detection methods achieve top performances.
Yang et al. [13] employ a graph ranking based optimization framework
for salient object detection in images. This work focuses on the

computation of the saliency-related cues or queries and a two-stage
scheme is proposed which considers both the foreground and the
background queries. Lu et al. [14] propose a method to learn optimal
queries for salient object detection. In this work, both the bottom-up
saliency and a set of mid-level vision features are computed for each
image region. Then the combination of features is learned using a
large-margin formulation to represent the optimal queries. In the work
[16], Li et al. propose a regularized random walk ranking framework to
formulate pixel-wise saliency based on the superpixel-based fore-
ground and background saliency estimations. Gong et al. [17] exploit
an iterated optimization algorithm to detect saliency from simple
regions to difficult regions using the teaching-to-learn and learning-
to-teach strategies.

In the optimization frameworks employed by the above methods,
we observe that these frameworks are usually based on two kinds of
information: similarity between the connected nodes (pixels or super-
pixels) in the constructed graph and the saliency-related queries. In
this paper, we propose a novel graph-based optimization framework to
incorporate not only the information already used by existing frame-
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works but also other important priors for salient object detection, e.g.
cognitive properties of visual saliency and cognitive properties of
perceptual grouping.

Cognitive properties of visual saliency were incorporated into the
first computational model of saliency detection [1], and many early
algorithms inspired by this work consider similar cognitive properties.
The most frequently used property is visual rarity. The idea behind
visual rarity is that human attention is usually drawn to image regions
with rare or unusual features, and not drawn to regions with features
common in that image. Mancas et al. [3] model visual rarity based on
information theory and use this to detect visual saliency. Hou and
Zhang [5] extract the rare parts of an image in the frequency domain
and use inverse Fourier transform to select these regions in the spatial
domain. Another useful cognitive property of visual saliency adopted
by salient object detection algorithms is a central bias prior. This prior
assumes that the central part of an image is more likely to be a salient
foreground object while the borders of an image are more likely to be
background. Zhu et al. [36] model this prior by assuming that an image
background region is usually heavily connected to the image boundary.
Jiang et al. [37] choose the boundary nodes as the absorbing nodes in a
Markov chain and compute a saliency value for each node based on the
absorption time from this node to the boundary absorbing nodes.
Besides cognitive properties of visual saliency, cognitive properties of
perceptual grouping are also employed by the existing saliency detec-
tion algorithms. One of the strongest perceptual grouping properties is
spatial proximity, which has been employed extensively in computer
vision research [13,37,38]. This property states that items which are
near each other are more likely to group together as one object than
items that are more widely separated. Yang et al. [13], Jiang et al. [37]
and Gopalakrishnan et al. [39] make use of spatial proximity to
construct a graph where each node is connected to its spatial neighbors
in the image. This reflects the fact that pixels which are spatially close
are likely to have similar saliency values. Another commonly used
perceptual grouping property is color similarity [40,41]. This property
states that image regions with similar colors are more likely to group
together, probably reflecting the fact that real-world objects of the same
kind usually have similar appearance. Achanta et al. [40] measure the
saliency value of each pixel by computing the magnitude of the
difference between the color features of this pixel and the mean color
features of the image.

By studying the existing optimization frameworks, we observe that
no cognitive properties of visual saliency are explicitly modeled in these
classical graph-based optimization frameworks. Based on this observa-
tion, we model one popular visual saliency property (visual rarity)
explicitly in our graph-based optimization framework. Specifically, we
model visual rarity as a regularization term in the graph-based
optimization framework. In this way, we can constrain the saliency
value of each image region according to the visual rarity property.
Another observation about the existing optimization frameworks is that
usually only one graph is constructed for salient object detection.
However, constructing only one graph may neglect important structure
information contained in complex natural scene images. In this paper,
we propose to employ multiple graphs to describe the image informa-
tion from different image properties. Inspired by previous graph-based
methods [13,14,17], we construct one graph based on spatial location
features. Since the above mentioned spatial proximity property and
central bias prior provide location related information about saliency
detection, we construct the first graph according to these two cognitive
properties: two nodes are connected if they are spatially adjacent to
indicate that nodes with close locations are likely to belong to the same
class and if both of them are boundary superpixels to indicate that
nodes on the image border tend to belong to the background. Besides
the graph based on location features, we construct another graph based
on color features inspired by color similarity property to reflect the fact
that image regions with similar appearance are likely to be part of the
same class (foreground or background). This property can help to
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detect multiple salient foreground objects or a single object with a
complex pattern.

The main contributions of our paper are summarized as follows: We
propose a novel graph-based optimization framework for salient object
detection. Firstly, we employ multiple graphs and use a weighted
combination in the optimization framework. We construct separate
graphs based on spatial features and color features to better capture the
complex information in a natural scene image. Secondly, we explicitly
model visual rarity as a regularization term in our graph-based
optimization framework to better detect visual salient objects.

We test our graph-based optimization framework on four different
saliency databases and demonstrate that our method outperforms
fifteen state-of-the-art methods, including previous graph-based opti-
mization methods. The remainder of this paper is organized as follows:
the proposed graph-based optimization framework is introduced in
Section 2. Section 3 describes how we construct multiple graphs and
acquire the regularization term based on visual rarity. Section 4
provides our method to compute the queries of the salient objects.
Section 5 describes our testing procedure and presents the compar-
isons to other salient object detection methods on different saliency
databases, and Section 6 concludes the paper.

2. The proposed framework

In a graph-based optimization framework, the goal is set to find a
function F: V = R which assigns a value F(i) to each node V(i). Given
V={v(Q),...,V(n)}, some of the nodes are queries. Q is defined such
that if V(i) is a query Q (i) = 1, and otherwise Q (i) = 0. Let W: V*V = R
denote the weighted adjacency matrix for a graph in which the weight
of each edge is defined as the similarity of the connected nodes.
Different function values F of different nodes are to be computed based
on their similarities to the connected nodes and the queries [42]. In
traditional graph-based optimization framework, the optimal function
(F*) based on the graph Laplacian can be computed by solving the
following optimization problem:

F* = arg “pn{S(F) + uCF)}S(F) = % Z WD IIF @) = F()IHCEF)
ij=1

= Y UFG) - 0WIP)

i=1

1)

In the term S(F), F(i) and F(j) are values for the nodes V(i) and V(j)
separately. From the formula, we can see that this term indicates the
smoothness constraint for the graph. If two nodes V(i) and V{j) are
connected with a high weight, the values of these two nodes should be
close. In the fitting constraint term C(f), F(i) and Q(i) indicate the
function value and the query value of the node V(i). So this term
represents the amount of weight put on the initial query assignment.
u € (0, o) is a parameter, which specifies the relative balance of these
two terms.

Recently, this optimization framework has been applied to the
problem of salient object detection. Some researchers focus on query
acquisition [13,14]. Some researchers focus on the graph construction
[15]. And some researchers place emphasis on the computation
sequence given the labeled nodes (queries) and unlabeled nodes [17].
These methods are among the state-of-the-art algorithms for salient
object detection because graph-based optimization framework facil-
itates the description of the structure information in an image and the
fusion of the priors via the queries.

By observing the classical graph-based optimization framework, we
find that it has two limitations when applied to salient object detection
in natural scene images. Firstly, only one graph is employed in this
framework. Natural scene images tend to have complex relations
between image regions because there are diverse objects with any
numerosity and any position in the image. Using only one graph to
represent the structure of an image may omit important information
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for saliency detection. Secondly, this framework does not explicitly
represent the cognitive properties of visual saliency in the graph-based
optimization function. As is introduced in Formula (1), the classical
framework makes use of the information between connected nodes in
the smoothness constraint term S(F) and the information of the
queries in the term C(f). In this framework, no cognitive property of
visual saliency is included. So the performance of this framework is
limited when it is applied to salient object detection. In this paper, we
put our emphasis on the graph-based optimization problem per se and
introduce a novel graph-based optimization framework to overcome
the above-mentioned limitations. Our proposed graph-based optimiza-
tion framework is formulated as follows:

F* = arg n}m{% > @ Si(F) + uC(F) + yR(F)}Sk(F)

k=1

2 WGIF () = F(IPHCE) = 2 (IF @) = QWIPIREF)

ij=1 i—1

Y OGHIF@IP)

i=1

&)

Firstly, we exploit multiple graphs to better describe the structure
information between different image regions and include multiple
smoothness constraint terms Si(F) in the optimization framework
based on these graphs. We employ m weighted adjacency matrixes to
represent m graphs which describe different relationships between
image regions based on different principles. We then use the parameter
ar to compute a weighted combination of different smoothness
constraint terms S;(F). The sum of these parameters Y," | a; is equal
to 1. By combining these terms together, we can measure the structure
of an image from different image properties.

Our second contribution is that we explicitly model one of the well-
known cognitive properties of visual saliency (i.e., visual rarity) in our
graph-based optimization framework to better detect visually salient
objects in images. We introduce a regularization term R (f) in addition
to the commonly used smoothness constraint term S(f) and fitting
constraint term C(f) in the optimization framework. We call this
regularization term the rarity term in our paper since it is constructed
based on visual rarity. Visual rarity captures the fact that human eyes
are often attracted to the rare features in an image but not to the
common features. Some researchers have modeled visual rarity for
saliency detection. For example, Mancas et al. [3] propose a visual
saliency detection model based on rarity and measure saliency using
information theory. In this paper, we model the visual rarity property
in our graph-based optimization framework as a regularization term. In
this regularization term, we introduce a vector O(i) indicating the
occurrence rate or frequency with which the feature value of a node V(i)
is present in the image. If a node has common features, this node
should have a large occurrence rate and thus should have a low saliency
value. We use a parameter y to represent the weight of this regulariza-
tion term.

We can see that there are three important factors for our graph-
based optimization framework: multiple graphs W} for the smoothness
constraint terms S;(F), the queries Q for the fitting constraint term
C(f), and the occurrence rate O for the rarity term R(f). All of these
factors are critical in determining the final saliency values. In Section 3,
we describe how we calculate multiple graphs Wy and the occurrence
rate O using important priors for salient object detection. And in
Section 4, we introduce how we compute salient queries Q based on a
central bias prior and the consistency between connected image
regions.

3. Multi graph construction and rarity term acquisition

In our method, we first use the SLIC approach [43] to over-segment
an image into homogeneous superpixels and then define these homo-
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geneous superpixels as the nodes of each graph. The number of
superpixels in each image is set to 200 in our method, as in previous
graph-based works [13,37]. The spatial and color features of each
superpixel are defined as its mean in the image coordinates and CIELab
color space, respectively. The values of the spatial and color features
are normalized to be in [0, 1].

3.1. Multi-graph construction

As described in Section 2, connected nodes with large edge weights
would have similar saliency values. So, well-constructed graphs should
connect the nodes which are likely to be in the same class (foreground
or background) and weight these edges appropriately. Although well-
constructed graphs are very important to determining the final saliency
values, most previous graph-based salient object detection methods do
not pay much attention to graph construction. These methods con-
struct a single graph to describe the relationships between different
image regions. Since a natural scene image tends to have complex
structure between image regions, using only one graph may omit
important information about the image. In this paper, we propose the
construction of multiple graphs to describe image information from
different image feature spaces. Specifically, we construct two graphs
based on spatial locations and color features, respectively. The follow-
ing sections present how we choose edges and compute edge weights
for these graphs.

3.1.1. Choosing edges for different graphs

In previous graph-based salient object detection methods [13,37],
the graph is constructed by choosing the edges based on spatial
location features. Inspired by these works, we employ a similar method
to choose edges for our first graph. Since spatial proximity property
and central bias prior provide spatial location related information
about saliency detection, we choose edges for our first graph based on
these properties. According to spatial proximity property, the image
regions which are spatially nearby tend to belong to the same class.
Thus, we connect each node in this graph to its spatial neighbors (the
superpixels which share a boundary) and to its spatial neighbors'
neighbors (the superpixels which share a boundary with any node in
the first set of spatial neighbors). Inspired by central bias prior, regions
on the image borders are likely to be background [44,45]. We further
fully connect the nodes on the borders of the image to reflect the prior
that they tend to belong to the “background” class. We introduce a
weighted adjacency matrix W; to represent our first constructed graph
based on spatial location:

A(, j) ifj € N(@)
A(,j) ifieB& € B
0 otherwise

W, j) =
(3)

We use the similarity between the connected nodes 7 and j (denoted
as A(i, j)) to represent the weight of the corresponding edge. N(i)
denotes the spatial neighbors and the neighbors' neighbors of node i. B
represents the node set which includes the nodes on the image borders.

Unlike previous graph-based methods [13,37] which employ only a
single graph, we exploit multiple graphs for salient object detection. We
construct another graph based on the cognitive property of color
similarity. According to this property, image regions with similar colors
are likely to share the same label. Specifically, we connect the image
regions which are neighbors in the color space to construct this graph.
This kind of graph helps to detect multiple salient foreground objects
or a single object with a complex pattern in an image. The weighted
adjacency matrix W, for this graph is formulated as follows:

A, j) ifD.(i,)) <e
0 otherwise

W, (i, j) =
2 (i, ) { @

In this formula, D.(i, j) denotes the color distance between the
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Fig. 1. An illustration of the occurrence rate.

nodes i and j, which is defined as the Euclidean distance between the
color features. We set € as 0.15 in our method.

3.1.2. Computing edge weights

In the previous section, we have introduced how we choose
different edges for different graphs. In this section, we introduce how
to compute the weight between connected nodes 7 and j based on the
similarity A (i, j) of different nodes for these graphs.

In existing graph-based salient object detection methods, edges are
usually weighted by the color distance between the nodes [13,37]:

. D.G, )
AGD eXp( o ] ®)

o is a scale parameter which controls the strength of the distance. If
o has a small value, only nodes with close features would make a
contribution. If ¢ has a large value, the nodes with larger distances
would also have influence on each other. We experimentally test the
effect of this parameter in Section 5.

This definition of the edge weight may produce false alarms if some
part of the distant background has a very similar color to the
foreground. Based on this consideration, we compute the edge weight
using not only the color distance but also the spatial distance [15]:

DG, j) + Dy(i, j)]

Al ) = exp(— .

(6)
D, (i, j) represents the spatial distance between the nodes 7 and j. A
popular way to compute the spatial distance is to compute the
Euclidean distance in the image coordinates. However, there is a
drawback when applying the Euclidean spatial distance to the problem
of salient object detection: the Euclidean spatial distance is largest
between the opposite borders of an image (e.g., the left and right
borders of an image), which indicates that there is a strong tendency
for the opposite image borders to be assigned to different classes. In
fact, different image borders are likely to belong to the same class
(“background”). To solve this problem, we employ the sine spatial
distance proposed in our previous work [15] to replace the Euclidean
spatial distance:

Dy, j) = \[(sin(zlx; — 5;0)* + (sinGrly, — y;)? %)

In this formula, x; and y; represent the horizontal and vertical axes

42

of a node 7 in the image plane, which have been normalized to be in [0,
1]. sin(z-lx; — x;1) computes the sine spatial distance between two nodes
i and j along the horizontal coordinate. Similarly, sin(z-ly; — y;1) is the
sine spatial distance along the vertical coordinate. Based on this
definition, the nodes with a small Euclidean spatial distance would
have a small sine spatial distance. Also, the nodes at the opposite
borders of the image would be considered spatially close, which is more
likely to make the image borders share the same label.

3.2. Rarity term acquisition

In our approach, we model visual rarity as a regularization term in
the graph-based optimization framework. We introduce a vector O in
this term as is introduced in Formula (2). This vector records the
occurrence rate or frequent rate O(7) that the features of a node 7 occur
in the image.

Since saliency detection is usually utilized as a preprocessing
operation for other computer vision applications, saliency detection
methods should be efficient. To this end, we simply compute the
occurrence rate O based on our already constructed graphs, which is
defined in the following formula:

o) = Y WG, )+ Y, Wi ))

j=1

8)

In the first half part of this formula, we include the degree of the
node i in the graph W;. According to the visual rarity, image back-
ground tends to occupy more area than salient foreground in an image
and should have a higher occurrence rate O. Our graph W; is
constructed so that the nodes on the image borders are connected to
more nodes and therefore have larger degree (Z;:l Wi (i, j)). So,
including this part in Eq. (8) makes the background nodes on the
image borders have high occurrence rates.

We also include the degree of the node 7 in the second graph Wo.
Inspired by the visual rarity, salient foreground tends to have rare color
features and connect to fewer nodes in graph W,. So, adding
Z';zl Ws (i, j) in Eq. (8) would make the salient foreground nodes have
lower occurrence rates. As an illustration, we diagram the occurrence
rate O in Fig. 1. It can be seen that the background in an image which
usually has frequent features will have high occurrence rate while the
salient foreground which usually has rare features will have low

j=1
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occurrence rate. From this figure, we also note that this rarity term can
help to detect the salient object near the image borders (second image)
and multiple salient objects (third image).

4. Query computation

In this section, we introduce how we compute the salient queries
based on our constructed graphs and the central bias prior of visual
saliency. According to the central bias prior, the nodes on the image
borders are more likely to be background. We use each of the four
image borders separately to get four temporal query results based on
the following formula:

2
. 1
0* = arg rrgn{2 > wS0) + MC(Q)}Sk(Q)
k=1

= Y WGHICH - 0(NIPHCQ@) = Y. (IQG) — BG)IP)

ij=1 i=1 9
In this formula, B(7) indicates whether a node belongs to one of the
four image borders. If a node i belongs to the image border, B(i) = —1

indicates that this node is a background node, and otherwise B (i) = 0.
Each of the four temporal query results is computed based on the
relationship between different nodes as defined by our constructed
graphs and one of the image borders. By setting the derivative of the
above function to be zero, the temporal query result is:

0* = [a(D1 = W) + ay(Dy — W) + pl™'B (10

Wi and W, are our two constructed graphs. D; is defined as
Z';zl Wi (i, j), representing the degree of each node for W;. Similarly, D
is defined as Z';.:l Ws (i, j), representing the degree of each node for Ws.
According to Eq. (10), the nodes which have similar features to the
image borders would have a value close to -1, and otherwise would
have a value close to 0. Based on four image borders (Bsop, Baowns
Biesr and B,.ign,) separately, we can get four temporal query results
(Qtops Qaorwns Qiesr and Qrign). We then normalize and multiply
them to get the final queries:

Qﬁnal = Norm (Qrop)' *Norm (Qdown)'*Norm (Qleft)' *Norm (Qright) (1 1)

In this formula, Norm () means to normalize the result to be in [0,
1]. We use node multiplication to combine different temporal query
results.

After getting the final queries in this section, the constructed graphs
and the rarity term in the previous section, we can compute the
saliency values of different nodes based on Eq. (2). By setting the
derivative of this formula to be 0, we get the final saliency result:

F*=[ay(Dy = W) + oy (Dy = Wa) + 7 (Dy + D2) + p 17 Qpinar (12)

The normalized result of F* indicates the likelihood that a node
belongs to the salient foreground. The procedure of our proposed
salient object detection method is summarized in Algorithm 1.

Algorithm 1. Salient object detection based on a novel graph-based
optimization framework.

Input: An image and required parameters.
1. Construct two graphs based on spatial locations and color
features, respectively: Choose graph edges by Eq. (3) for G; and
choose graph edges by Eq. (4) for G,; Compute edge weights by
Egs. (6) and (7) for these two graphs.
2. Compute the occurrence rate O by Eq. (8).
3. Compute four temporal query results Q;op, Qdowns Qresr and
Qrignt by Eq. (10). Then get the final query result Qgnar by Eq.
1n).
4. Compute the final saliency result by Eq. (12) according to the
constructed graphs, the occurrence rate, and the final query re-
sult.
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Output: A saliency map.

5. Experimental comparisons

In this section, we compare our proposed method to fifteen state-of-
the-art saliency detection methods: IT [1], LC [46], FT [40], HC [47],
GB [48], RC [47], CB [49], HM [50], HS [51], AM [37], GR [13], BD
[36], CL [17], RR [16] and GP [52]. Following [40,47], we chose
different methods based on various principles: recency (CL, RR and
GP) and variety (IT is biologically motivated; LC is purely computa-
tional; FT is frequency tuned; HC is based on color histogram; RC uses
regional contrast; CB is based on context and shape knowledge; and
GB, AM, GR, CL, RR and GP are graph based).

We evaluate these methods on four salient object databases: the
10 000-image MSRA10K database [47], the 643-image iCoseg database
[53], the 1000-image Extended Complex Scene Saliency Database
(ECSSD) [51] and the 300-image SOD database [54]. In the
MSRA10K database, each image has an unambiguous salient object.
The iCoseg database contains images with one or multiple foreground
objects. The ECSSD database contains natural images with complex
foreground and background patterns. The SOD database contains 300
challenging images from the Berkeley segmentation database [55].

5.1. Evaluation metrics

We evaluate different methods using standard precision—recall
curves [56]. To get the precision—recall curve for each method, the
saliency map is binarized at each threshold in the range [0:1:255] and
the precision and recall values at each threshold are computed by
comparing the binary map with the ground truth. Let Fg, and Fg4
denote the foreground of the ground truth and the detected foreground
in the binary map, respectively. The precision and recall values are
mathematically defined as:

Precision = area(Fy N Fy)larea (Fy)Recall = area(Fy N Fy)larea(Fy)
(13)
In many cases, high precision and recall values are both required.
So, as measures of overall performance we report the area under the
precision—recall curve (average precision, AP) [56] and the F-measure
[57] using twice the mean value of the saliency map as a threshold. The
formulation of F-measure is as follows and we set 2 = 1 to place equal
emphasize on precision and recall:

(1 + B?)-precision-recall
F/} =

a4

p*precision + recall

5.2. Experimental setup

There are four primary parameters in our proposed method: three
parameters (aj, 4 and y) in Egs. (10) and (12) and one parameter (o) in
Eq. (6). The parameter a, in Egs. (10) and (12) is set according to
Zi:] o, = 1. We test different values for these parameters on the 300-
image SOD database using average precision (AP).

The parameters a; and a, specify the relative weights of two
constructed graphs, respectively, where oy € [0, 1] and a; = 1 — . If
a; = 0, the result only depends on the second graph. If ¢; = 1, the result
only depends on the first graph. From Table 1, we can see that the
performance is better when combining two graphs than only using one
graph and the performance is best when the weight a; = 0.4. So in this
paper, we set oy = 0.4 and a, = 0.6 for all experiments on different
databases.

The parameter u € (0, o) provides the contribution of the fitting
term C(F). The larger u is, the more C(F) will contribute to the result.
In this paper, we set 4 = 0.01 for all experiments on different databases
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Table 1
Performance comparison with different a;.

a 0 0.1 0.2 0.3 0.4 0.5
AP 0.6395 0.7063 0.7244 0.7320 0.7368 0.7315
o 0.6 0.7 0.8 0.9 1 -
AP 0.7266 0.7197 0.7127 0.7031 0.7008 -

The optimal performance is highlighted with bold fonts.

Table 2

Performance comparison with different .
" 0.001 0.01 0.02 0.03 0.04 0.05
AP 0.7300 0.7368 0.7291 0.7264 0.7217 0.7210

The optimal performance is highlighted with bold fonts.

Table 3

Performance comparison with different y.
b2 0.001 0.01 0.02 0.03 0.04 0.05
AP 0.7181 0.7322 0.7368 0.7310 0.7315 0.7308

The optimal performance is highlighted with bold fonts.

based on Table 2.

Similarly, the parameter y € (0, o) provides the contribution of the
rarity term R (f). Larger y means that R(f) will contribute more to the
result. We set y = 0.02 for all experiments in this paper based on
Table 3.

Table 4 shows the effect when changing the value of 0. The results
are satisfactory when ¢ is set from 0.04 to 0.1. In our implementation,
we set 6% = 0.05 for all experiments on different databases.

5.3. Quantitative comparison

In this section, we compare our method with fifteen state-of-the-art
methods on four different databases with multiple metrics.

MSRAIOK: Fig. 2(a) shows the precision—recall curves of different
methods. It can be seen that the proposed method outperforms GR
[13], CL [17], RR [16] and GP [52] which are also graph-based
methods and have top performances. We also compute the average
precision and F-measure for different methods. Fig. 2(b) and (c) shows
that our proposed method achieves the highest average precision and
F-measure values. Overall, the quantitative results using three metrics
demonstrate that the proposed method outperforms the state-of-the art
methods on this large database.

iCoseg: We further evaluate the proposed method on the iCoseg
database in which each image contains one or multiple foreground

Table 4
Performance comparison with different o°.

P2 0.01 0.02 0.03 0.04 0.05 0.06
AP 0.3167 0.3276 0.6339 0.7283 0.7368 0.7326
P 0.07 0.08 0.09 0.10 0.15 0.20
AP 0.7297 0.7268 0.7228 0.7231 0.7165 0.7135

The optimal performance is highlighted with bold fonts.
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objects, shown in Fig. 2(d)—(f). We note that the performances of
different methods drop a little in comparison to the performances on
the MSRA10K database. This indicates that it is harder to detect all of
the foreground regions when there are multiple salient objects in an
image. From the results, it can be seen that the proposed method
outperforms other methods on this database. It demonstrates that the
use of multiple graphs representing different image properties and the
rarity term in our proposed method can help to detect all salient objects
in the image.

ECSSD: The ECSSD database is the extended complex scene
saliency database, which contains 1000 natural images with complex
foreground and background patterns. The performance comparison in
Fig. 2(g)—(i) demonstrates that the proposed method can better detect
salient objects in complex natural images than other state-of-the-art
methods.

SOD: The SOD database is a difficult salient object detection
database, which contains a number of natural images with multiple
foreground objects and complex patterns. The performances of differ-
ent methods are shown in Fig. 2(j)—(1). Fig. 2(j) shows that when the
precision value is equal, our proposed method has a larger recall value
than other methods. Fig. 2(k) and (1) demonstrates that the proposed
method outperforms other methods on the AP and F-score measures.
We also note that the performances of different methods on this
database are much lower than the performances on the MSRA10K
database. This indicates that there is room for improvement in future
methods to better detect salient objects in natural images with multiple
foreground objects and complex patterns.

5.4. Visual comparison

We present some saliency maps generated by our method as well as
fifteen other methods for visual comparison in Fig. 3. Representative
natural images have been chosen to highlight the differences between
different methods. The first and second images contain a complex
foreground object. Most methods highlight part of the salient object
(e.g. the roof part of the building) while our proposed method can
uniformly highlight the whole salient object. The third image contains
complex background. Many methods would wrongly highlight part of
the background, but our proposed method is more accurate because we
introduce the rarity term in our graph-based optimization framework,
which can help to inhibit the image background. The forth image
contains one small salient object. A lot of methods wrongly highlight
the smoke near the plane. The reason why our method can give a better
saliency detection result is that the rarity term in our framework helps
to highlight the small red plane and inhibit the background. The fifth
image contains multiple small salient objects. Our method is able to
detect all of them. The last image also contains multiple salient objects.
Among these salient objects, part of them are not close to others. Some
methods (e.g. AM, GR and RR, which are also graph-based methods)
cannot uniformly highlight all the objects. The major reason why our
method works better here is that we include the color-based graph in
our method, which can help to highlight all the salient objects even if
they are not close to each other. In a word, the saliency maps generated
by our proposed method can better highlight all the salient objects with
fewer noisy results.

5.5. Examination of design options

We examine different design options on the SOD database, shown
in Fig. 4. We first examine the major innovations of the proposed
method in Fig. 4(a). The yellow curve provides the performance of the
method with one graph connecting nodes based on spatial locations
only and without the rarity term. Similarly, the black curve provides the
performance of the method with one graph based on color features only
and without the rarity term. The blue curve gives the performance of
the method with two graphs (one graph is constructed by connecting
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Fig. 3. Comparison of different salient object detection methods. The column (a) is the original image, the column (b) is the ground truth, and the remaining columns are results of the
evaluated methods. Our method is the column (c) of the results. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 4. Precision—recall curves on the SOD database with different design options of the proposed method.

is referred to the web version of this paper.)

Table 5
Performance comparison with different weight for color distance.

P 0 0.2 0.4 0.6 0.8 1
AP 0.6377 0.6761 0.7080 0.7216 0.7383 0.7368
P 1.2 1.4 1.6 1.8 2 -
AP 0.7273 0.7109 0.6850 0.6602 0.6286 -

The optimal performance is highlighted with bold fonts.

nodes based on spatial locations and another graph is constructed
based on color features) and without the rarity term. The above curves
demonstrate that multiple graphs from different image properties are
helpful to detect salient objects. The red curve represents the perfor-
mance of the final output with two graphs and the rarity term. As

47

Pattern Recognition 64 (2017) 39-50

1 T T

—Two Graphs and Rarity Term
One Graph and Rarity Term
—Two Graphs and No Rarity Term
——0One Graph and No Rarity Term

precision

0.2 L L L L
0 0.2 0.4 0.6 0.8 1
recall
b)

1 ,
—slLIC
—LsC
097 —ERS

EDISON

precision

0.2 . . . .

0.2 0.4 0.6
recall
d)

(For interpretation of the references to color in this figure caption, the reader

0.8 1

shown by the blue curve and the red curve, the complete method
outperforms the method without the rarity term, which demonstrates
the effectiveness of our designed rarity term. Based on the above
observations, both the use of multiple graphs based on different image
properties and the rarity term in our optimization framework con-
tribute to the overall performance.

We further compare the performances of the methods using two
graphs and using one graph by connecting image nodes based on both
spatial and color properties, shown in Fig. 4(b). No matter with or
without the rarity term, the method using two graphs outperforms the
method using one graph. One reason is that the method using two
graphs would put emphasis on the spatial neighbors which share
similar colors since both the graph based on spatial property and the
graph based on color features would connect these close and similar
nodes. For salient object detection problem, the spatial neighbors
which share similar colors have a bigger chance to belong to the same
class (foreground or background) than the spatial neighbors which do
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Fig. 5. Visual comparison of different over-segmentation approaches. The column (a) is the original image and the remaining columns are results of different over-segmentation

approaches.

Fig. 6. Failed cases of our method. The column (a) is the original image; (b) contains the over-segmentation result; (c) is the imperfect saliency map; and (d) shows the corresponding

truth.

not share similar colors and the similar image regions which are far
from each other. Another reason is that in our method we use a
weighted combination of the two graphs in the optimization frame-
work. Weighted combination of two graphs is able to better describe
the structure information contained in an image than one graph.

We also examine different edge weight computation methods using
different distances in Fig. 4(c). In existing graph-based salient object
detection methods, color distance is usually used to compute edge
weight. The green curve in Fig. 4(c) provides the performance using
color distance while the blue curve provides the performance using
both color distance and Euclidean spatial distance. These two curves
demonstrate that spatial distance also make contributions besides the
color distance. The red curve provides the performance using both
color distance and sine spatial distance, which proves that the sine
spatial distance employed in our method is able to better detect salient
objects in images than the frequently-used Euclidean spatial distance.

Since we use both color distance and Sine spatial distance for edge
weight, we further examine the relative weights of color distance and
Sine spatial distance to see whether one distance would dominate the
overall distance value and thus have a dominant influence on the final
saliency detection performance. The performances of the results using
different weights p for color distance are shown in Table 5. The
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corresponding weight for Sine spatial distance is 2 — p. Then the final
distance used for edge weight is p-D. + (2 — p)-D,. We observe that the
performance is poor when p equals 0 or 2 (i.e. only one distance is
used) and the performance is best when p equals 0.8 or 1 (i.e. the color
distance and sine spatial distance have nearly equal weight). This
suggests that both distances make roughly equal contributions to the
final saliency detection performance. In this paper, we simply sum
these two distances (i.e. p = 1) as introduced in Eq. (6) for edge weight.

In this paper, we employ the commonly used segmentation
approach: SLIC [43] to over-segment an image into homogeneous
superpixels, as in most previous graph-based salient object detection
methods [13,14,16,17]. We further compare four different over-
segmentation approaches: EDISON [58], ERS [59], LSC [60] and
SLIC [43] to examine their effects on the final saliency detection
results. Visual comparison of these over-segmentation approaches is
shown in Fig. 5. The superpixels segmented by EDISON have very
different sizes, e.g. the sky in the image is mostly contained in one big
superpixel while the crosses on the roof of the building in the second
image is contained in small superpixels. Superpixels segmented by ERS
are similar in size but have widely varying shapes. The superpixels
segmented by LSC and SLIC tend to be similar in both size and shape.
The quantitative comparison of the final saliency detection results
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based on these approaches is shown in Fig. 4(d). The EDISON
segmentation method gives the poorest saliency detection results.
The ERS superpixel method outperforms EDISON, while the results
based on LSC and SLIC give the best performance. From these
comparisons, we observe that the variation in the sizes and shapes of
the superpixels has an influence on superpixel-based salient object
detection methods. Both LSC and SLIC give acceptable over-segmenta-
tion results for salient object detection. In this paper, we adopt the
SLIC approach because it has been used in previous salient object
detection methods.

The average execution time of the proposed method (without
parallel programming) is 0.86 s per image conducted on a 64-bit PC
with Intel Core 17-4790 CPU @ 3.60 GHz and 8 GB RAM.

5.6. Failed cases

Although our method achieves impressive results in most cases, it
may fail if (1) the target is wrongly over-segmented by the superpixel
method or (2) the target is extremely similar in appearance to the
background. The two failed cases of our method are shown in Fig. 6. In
Fig. 6(a), the rotor blades of the windmill are thin and long. Part of
these rotor blades is wrongly over-segmented. In this case, our method
can only detect part of the salient object. In Fig. 6(b), the appearance of
the lizard is very similar to the background, therefore the final saliency
map is not good. Actually, the above two cases (1) and (2) are also very
challenging for the existing salient object detection algorithms.

6. Conclusion

In this work, we presented a novel graph-based optimization
framework for salient object detection. Unlike the traditional graph-
based optimization framework, we include multiple graphs and model
the property of visual rarity as a regularization term in the optimization
framework. The natural scene image is represented using multiple
graphs representing different image properties over the set of its
superpixels. The saliency value of each superpixel is computed based
on the similarity between connected nodes in multiple graphs, saliency
related queries, and visual rarity. An extensive experimental evaluation
demonstrates the effectiveness and efficiency of our method on four
representative saliency databases.
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